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Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium
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Statistical properties of a random amplifying medium near the lasing threshold are considered. We
show that the transmission fluctuations grow faster than the average transmission. This is related to the
fluctuations of the threshold amplification value. We find that the spectrum of lasing states possesses the
kind of rigidity that so far is known only for the chaotic Hamiltonian systems.
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I. INTRODUCTION

The statistical approach for studying the spectral prop-
erties of a multimode quantum generator is not popular
as yet. Probably, the reason is that one often considers
the feedback system for an amplifying medium in the
laser as an integrable resonator [1]. In a more sophisti-
cated system, such as an amplifier integrated in an opti-
cal network that provides unavoidable random scattering
or a laser resonator of nonintegrable shape, it is impossi-
ble to calculate analytically the transmission coefficients
and eigenstates. From experience with the spectra of nu-
clei and small metallic particles [2] it is well known that
this situation calls for a statistical treatment.

For a diffusive amplifying medium, Letokhov [3] using
Boltzmann kinetics has calculated the lasing threshold
and considered the relaxation of a lasing solution to the
steady state. However, the study of interference phenom-
ena in a random amplifying medium has not attracted
much attention, despite the obvious advantage that the
amplification can bring. For example, the serious ob-
stacle in the experimental study of a phenomenon, such
as Anderson localization of the light, is an absorption.
This undesirable circumstance can be overcome by using
a random medium that allows for pumping and therefore
reverses the sign of an absorption. Weak localization in
the backscattering from a medium near threshold has
been addressed in the paper [4].

This paper concentrates on the statistical properties of
the linear disordered multimode system, when this sys-
tem approaches the lasing threshold from below. The
transmission coefficient of the system is considered. Due
to the disorder, it is a random quantity. Regarding the
properties of mesoscopic conductors the statistics of the
transmission was of considerable interest in recent years
[5]. The system under consideration is an active medium
that undergoes an optical phase transition. This creates a
difference in the problem of mesoscopic conductors. We
found that near threshold the transmission is not a self-
averaging quantity, i.e., the fluctuations of the transmis-
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sion coefficient become larger than the average value.
Therefore, it is more appropriate to consider the fluctua-
tions of the threshold value of the amplification. This
value, which is necessary to bring a mode to lasing
threshold, is a random function of the frequency. The
correlation properties of this function are considered. Fi-
nally, we evaluate the fluctuation of the number of lasing
solutions. We show that the spectrum possesses Dyson
rigidity [6]. The interesting element here is that we find
this property for a non-Hamiltonian system.

II. DESCRIPTION OF THE MODEL

Let us describe the problem under consideration in
more detail. We keep in mind the propagation of elec-
tromagnetic waves (e), because the amplification is the
real thing here. The direction of the polarization of elec-
tromagnetic waves relaxes in the course of only a few
scattering events; therefore, we neglect the polarization
and consider only a scalar version of the Maxwell equa-
tions;

[A+k2%e(¥)]e=0 . (1)

>

Here k is the wave vector. &(7)=g(F)+ie,(¥) is a com-
plex dielectric function. We assume that the intrinsic or
artificial defects, impurities, etc., cause the fluctuation in
€,(7), so the real part of the function has a form &,(7),
=1+48¢,(¥), where 8¢,(¥) is the white-noise-like random
function with the properties (8¢,(7))=0 and
(8e,(¥,)8g,(F,)) = A8(¥, —F,). We also consider the ap-
proximation that allows us to introduce the dielectric
function with a negative imaginary part [7]. We have in
mind the system in the linear regime with the time-
independent population inversion and fast dipole transi-
tions of the pumped atoms. Due to population inversion,
the imaginary part of the dielectric constant
£, —y/[(o—w,)*+y?*] is a negative in some frequency
interval near atomic frequency w, of the pumped atoms.
We suppose homogeneous pumping; therefore, the depen-
dence of the imaginary part on the coordinate means that
it is nonzero only in a sample. Saturation effects are
neglected, and the times of relaxation of an atomic sys-
tem ¥ ! and of establishment of the population distribu-
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tion are supposed to be short compared to the time of the
radiation diffusion out of the system. These assumptions
allow us to neglect the dispersion of &,(F). We intend to
consider the propagation of the waves with frequencies in
the region of a negative imaginary part of the dielectric
function.

The important quantities that describe the propagation
of the waves are the current density

T=_C (o*Ve—aVa*

J ik {e*Ve—eVe*| ()
and the intensity of the radiation -

N=lel?. (3)

From Eq. (1), we have
V-J +cke,(FIN =0 . )

In the present paper, we discuss the propagation of the
wave in the linear amplifying medium, where the wave
undergoes multiple random scattering. We are interested
in scales larger than the mean free path; therefore, the
propagation of the radiation obeys the diffusion law. The
diffusion coefficient is given by expression D =cl/3,
where [ =c7 is the mean free path and 1/7=cAk*/47.
To neglect the localization effects, we assume that the
mean free path is larger than the wavelength of the radia-
tion Ik >>1.

Now we describe the geometry of the system. A
schematic sample is shown in Fig. 1. The sample is of
any shape in the transverse direction, and of the length
L, in the longitudinal direction. The side surface is sup-
posed to be a perfect reflector. All sample dimensions are
much larger than the mean free path.

If the flux J, is entering the system, then from (4) we
obtain in the steady state

Jo+J e —Jo=ck|e,| fVa?Nm : (5)

Here J,, and J; are the total fluxes in the transmission
and reflection, respectively. V=L, S is the volume of the
system and S is a cross section area. The right-hand
side of (5) gives the amplified value of the flux. We also
introduce the transmission coefficient J,, =7J, and the
reflection coefficient J =RJ,,.

>

FIG. 1. Schematic picture of the system. The amplifying
medium is shaded. Dots show the scattering impurities. Ar-
rows show the path that the wave travels while undergoing the
multiple scattering.
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III. AVERAGE BEHAVIOR OF THE SYSTEM

Let us recall the behavior of the average intensity
(N(#,t)) and, related to it, current (J(7,2))
=—DV{(N(7,t)). The brackets denote averaging over a
random realizations of &g,(7).

The average intensity { N(¥,t)) obeys the equation [3]

UNG) _pa(nireyy+ SNEDY

3t 7o ©

The time 1/7,=ck|e,| corresponds to the amplification.
Boundary conditions for (6) imply that { N(7,t)) is zero
on free boundaries x =0,L, and the current throughout
the insulating surface is zero. For a discussion of the
boundary conditions, see Ref. [8].
Considering the relaxation of some perturbation at a
large time, we have
] . (7)

Here the first term on the right-hand side of the equa-
tion describes a diffusive decay of the intensity. The
second term describes the amplification effect. If the size
of the system is larger than the critical one, the second
term wins, and any fluctuation of the intensity become
unstable. For the critical size the growth of the intensity
is balanced by the current outgoing from the boundaries,
and the relaxation time goes to infinity.

It is convenient to measure the length of the sample in
the units of the critical size

2

To

T

D
L

(N(7,t)) <exp!—t

X

L,=L.(1—A), where L, =m\/D7,. (8)

We also need a solution of (6) for the steady state with the
given external flux. Solving (6) with sources of the radia-
tion distributed on a free surface x =0 [8], we obtain

. L,—x
sin |7
— LCI’
(N(F))=N,
. Lx
sin |7
Lcr
z}—isin ‘77‘ 1—A— Lx (9a)

cr

Here the second equality is valid in the limit A—0. Tak-
ing the derivative of (9a), we obtain an expression for the
current

X

1—A— 2

(9b)

(JXFn =7

cr

No

cos {mT
CI'A
Here we introduce quantity No=3|n-Jy|/c. © and .70 are
normal to the surface unit vector and the incident flux,
respectively. Calculating (9b) on the boundary x=L,,
we obtain expression for the average transmission
coefficient

(J¥x=L,)) _ 1

. (10)
|ﬁ'J0| LcrA

(T)=
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This expression contains the additional amplification fac-
tor A”! compared to the transmission coefficient of an
elastic medium. Let us mention that in the reflection we
also have amplifying (R )=1+1/L_A. To obtdin this
formula for the reflection coefficient, we use definitions
(5) and (9a) for the mean value of the intensity { N(¥)).

The solution of the intensity in the critical state one
can obtain from (9a) in the limit A, N,—0, but keeping
finite A/N,. Saying it backward, the critical size can be
determined as a size of the system that sustains the finite
intensity of the radiation in the limit of zero external flux.
In the next section we will apply this fact for studying the
fluctuation of the threshold.

IV. TRANSMISSION AND FLUCTUATIONS
OF THE THRESHOLD

We will see shortly that the statistical fluctuations be-
come important near the threshold. To consider them,
we will apply the Langevin approach that initially was
developed in the study of the fluctuations in an elastic
random medium [9]. Besides the average part, the
current contains the random contribution that can be ex-
pressed as

8J(F)=—DVSN(¥)+J ., (F) . (11)

Here J (7) is the Langevin random current. In the
case of the coherent monochromatic incident wave corre-

J

Al A? (

o)) = 67 A’+[ro(w—w')]?

(T (Fol

Conservation law (4) reads that

5-J(7) =T

!

To

N(F))28,8(F—7") .

FIG. 2. Diagram describing the correlation function of the
Langevin currents at frequencies w and ' in the points 7and 7,
respectively. Solid lines describe the Green’s function of Eq. (1),
while dashed lines describe the scattering of the waves.

lation function of the Langevin current is given by ex-
pression [9].

(JL(FWE (7)) = Ae?l SN 28 8(F ) . (12a)
This expression can be derived by summing the diagrams
shown in Fig. 2. Expression (12a) describes the Langevin
currents of the radiation of the same frequency averaged
over the scale of the mean free path. Correlation of the
Langevin currents of the monochromatic waves of the
different frequencies w and o’ in the limit A—0 is given
by the expression

(12b)

Combining (11) and (13), for the fluctuations of the intensity 6N (7), we obtain the following equation:

— DASN(F)+ VT, (F)= 8{").
0

Equation (14) is supplemented by the same boundary condition as (6), SN (¥)
fluctuating current throughout the insulating surface is zero.

(14)

=0 at free boundaries x =0, L, while the

Let us reexamine the problem of the transmission near the threshold. Sample-specific transmission differs from the

average (10) by the amount

ST=T—(T)=|Jp#|"' [ _ 358J(¥).

Averaging the square of it, we obtain the following expression:

(@T?)=D*[ _ ., 85,857

"8 i f or,0r,

d . d I
B;TG(r,rl,O)—G(r ;72;0)

(TX (F) (7)) (15)

9x;

Deriving (15), we take into account that according to (12a) the Langevin currents are zero on the free boundaries.

Here G(7;7 ;o
over the cross-section area for small A,

(x+x')

LCl’ L

cosm |1— —COoSsT

cr

_x—x'

) is the Green’s function of the diffusion equation (6) at frequency . We need this function integrated

L

cr

|

[85,. 67 0)= 5 .
mD(A+iwTy)
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Using this expression and (9a), we obtain

(672 _ Lo
<T>2 87J'Azé‘loc .

Here we introduce &,,.=27dS /3A%, which is the locali-
zation length in a sample without the amplification [10].
We assume that it is much larger than the length of the
sample L, so we can (L, <<§,.) neglect the localization
effects on the transmission.

Fluctuations near the threshold grow faster than the
average, therefore T is not the self-averaging quantity.
This situation can be interpreted in terms of the fluctua-
tions of the threshold value of the amplification. It is
clear from the above that the threshold corresponds to
the situation when the nonzero density of the radiation
exists in the limit of zero external flux. For the average
intensity, this happens when A=0. In the general case,
we need to find this condition for Eq. (1). Because of the
random nature of (1) instead of trying to solve it, we turn
to the calculation of fluctuations of the threshold. To do
this we consider the threshold value of 7, !, for which
(N(7))+8N(¥) has the nonzero value in the limit of
zero external flux. Let us consider the quantity VJ ex(r
in the equation for ( N(7))+8N(¥) [it is the same as (14)]
as a small perturbation. Perturbation theory gives the
first order correction to the average threshold

_ [ P (NE)V T\ (F)
Q=lim —¥ . (18)
[ arn)?

(17

This correction depends on the realization of the im-
purity configuration, and to estimate its value we calcu-
late (Q?). Using expression (12a) for the correlation
function of the Langevin currents near the threshold, we
obtain

8L

2
T Sloc

cr

(Qz>—'ro

(19)

One easily can see that if the transmission has the
power law divergency near the corrected threshold
T«<Il/(A+A)L_, where Ax7, Q) is a random correc-
tion to the threshold, then making use of (19) we obtain
the expression (17).

Equation (18) does not specify the frequency depen-
dence of the threshold. It is clear from the nature of the
problem that the threshold is a random function of the
frequency. Let us consider the correlation function
(QUw)Q(w')). If we assume that expression (18) deter-
mines { for some frequency, then using (12b) we find the
correlation function as the limit A—0 of an expression

8L 4A% 75 ?
@')) =715 — 7o 5 -
Trzé’loc 4A27'62+(a)—-a)’)

{( Q)

It is reasonable that in this correlation function the
minimum value of A7 ? must be of the order of the fluc-
tuation (19) of the threshold itself. This condition deter-
mines a_ correlation scale of the frequencies as
ocTO_I\/(Lcr/gloc)'

The outcome of these results might be as follows. It is
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clear from the physical meaning of (J?) that expression
(19) gives the estimation of the interval of the
amplification; one needs to generate all modes. We also
may conclude that correlation in appearance of the

modes at a distance larger than 74 'V/L_, /£, from each
other is suppressed.

V. FLUCTUATION OF THE NUMBER
OF LASING SOLUTIONS

When the system is close to the lasing threshold, a
discrete structure of modes appears. Standard expres-
sions [1,6] for the mode incorporate shift of the eigenfre-
quencies of resonator (which are precursors of the lasing
modes) due to the dispersion of the real and imaginary
parts of the dielectric function (energy pulling). In the
system under consideration, one might expect that ‘“reso-
nances” of the cavity are broadened by the order of
72D /L2 due to the diffusive escape from the system, and
mode spacing is of the order of p=1/Vv, where v is the
density of states in the region of interest. The ratio of
spacing to the broadening is of the order of L, /&, <<1.
Near threshold, when pumping compensates for the es-
cape rate 7°D/L2=~7;!, the modes become well
developed. Our system is a random one; therefore the
statistic of the modes is of importance. On average, there
are (N )=08w/p modes in the frequency interval 8. We
are speaking of the intervals smaller than the atomic
broadening near the center of atomic frequency, where
the amplification is maximum, and therefore neglect the
dispersion of the dielectric function.

For the fluctuation of the number of modes, our result
is

((8N)*)=27""In(N) . (20)

Here SN=N—(N). It means that the rigidity of the
spectrum exists as it is for the Hamiltonian systems [6].
Formula (20) coincides with the formula for the orthogo-
nal Wigner-Dyson ensemble of real random matrixes.
This is surprising in view of the fact that our system is
dissipative and its evolution is described by a non-
hermitian equation.

Let us briefly describe the derivation of expression (20).
Usually the number of energy levels is given by

N=fawaa)vy(a)) . (21)

In expression (21), the density of states in a sample is

determined as

VV(CO

)= [ r3so—0,)l¥,@I*,

[ v, mP=1. (22)

Here w, and V¥, (7) are the eigenvalues and eigenstates,
respectlvely Also, we can rewrite (22) in terms of the re-
tarded and advanced Green’s functions:
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FIG. 3. Diagram describing the correlation function of local
densities of states at frequencies © and ' in the points 7 and 7,
respectively. To obtain the correlation function of the density
of the states, one must integrate over 7 and 7.

_ 1
= 1 T4 -
vilw)=(2m) fVarg P
S S 2
o—ow,+id ¥, ()]
=@m "' [ F[GRF,F)—GAF,7)] . (23)
Vv

At this point, we need to make a comment. We calculate
the density of states through the Green’s function of Eq.
(1). Definitions (22) and (23) come from the spectral rep-
resentation of the Green’s function of a finite system. In
our case, however, ¥, (7) are extended eigenstates; those
asymptotics correspond to outgoing waves. Therefore,
we cannot rigorously prove (21)-(23), but we can check
them for a solvable case. We did it for a one-dimensional
case with only two mirrors (the Fabry-Pérot-type resona-
tor). One can check that the correction to (23) in this
case is of the order of A/L,; therefore, we assume that
(21), (22), and (23) hold up to a possible small correction.

Taking the average of two Green’s functions as is
shown in Fig. 3, we obtain an expression:

<VV(a))vV(w'))=7r‘2RefVa?la?lG(71;?2;a)—a)')
XG(Fyro—o') . (24)

More details about this kind of averaging can be found
in [9] and [11]. In expression (24), G(¥|;7,;0—®") is the
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Green’s function of the diffusion equation (6). Calculat-
ing it in the limit A—0, we obtain
R E YN N
(viloWyle'))=7""Re T—+z(w—w ) (25)
0

Taking the integrals of (25) over frequencies, we arrive at
(20).

VI. CONCLUSION

We have considered some statistical properties of the
linear random amplifying medium. It is shown that fluc-
tuations in the transmission diverge faster than the aver-
age near the threshold. This is a consequence of the fluc-
tuations of the threshold value of the amplification.
Threshold is also a random function of frequency, with
the variance and correlation scale increasing with rising
disorder. The fluctuation of the number of lasing solu-
tions shows a rigidity similar to that of the Hamiltonian
system. We should stress that our system is not one of
Wigner-Dyson classification, and the distribution of
modes must also describe the distribution of their imagi-
nary parts. Based on the physical background, their vari-
ance is proportional to that of the threshold.

So far we considered a medium that is far from the An-
derson transition (L, <<§,.). In the localization regime,
when L, =& ., on a physical basis we may expect that
the picture of generation must change drastically, the
threshold decreases with increasing L, exponentially, and
the fluctuations of the threshold become very large. It is
also of interest to consider the influence of the
amplification on the localization. In [4] it was shown
that the localization effects in the backscattering are
strongly enhanced near the threshold. We will consider
the questions of interplay between the localization and
generation in a future work.
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